Woven Geotextiles as most sustainable solution

Woven Geotextiles I Durability reference

For a new runway of 160.000m² at Ostend-Bruges Airport, a durable woven geotextile is installed with remarkable impact in CO₂ emissions.

Reduced carbon impact comes on multiple levels:

1. **Product:** Geotextile Terralys LF 57/57 versus 10 cm Gravel

2. Raw Material: PP – PET Granulate

Geotextile Type: Woven versus Nonwoven

Woven Geotextiles I Reduced carbon impact

1. Product: Woven Geotextile Terralys LF 57/57 versus 10 cm Gravel

A 10 cm layer of gravel on a surface of 160.000m² results in 16.000 tonnes of material (2 ton/m³). Taking into account 27 tons/truck, this results in 593 trucks bringing material to the site.

Functional unit: 1 m³ Cradle-to-Grave

Layer	Size	CO ₂ emissions	# Truck
Gravel	10 cm	$(7.8 \text{ kg CO}_2/30 \text{ cm})*10 \text{ cm} = 2.6 \text{ kg CO}_2$	593
Terralys LF 57/57	220 gsm	$(0.81 \text{ kg CO}_2/175 \text{ gsm})^* 220 \text{ gsm} = 1.02 \text{ kg CO}_2$	2-3

Source: EAGM, own assumptions

Conclusion:

This choice resulted in 252.800 kg CO2 savings.

Woven Geotextiles I Reduced carbon impact

2. Raw Material: PP - PET Granulate

The most common polymers used in the manufacture of geotextiles are PP and PET. What is the impact of the raw material?

Functional unit: 1 kg granulate

Cradle-to-Gate

Raw Material	CO ₂ emissions	
PP-granulate	1,63 kg CO ₂ / kg granulate	
PET-granulate	2,19 kg CO ₂ / kg granulate	

Source: Plastic Europe

Conclusion:

This choice results in 17.920 kg CO₂ savings.

Woven Geotextiles I Reduced carbon impact

3. Geotextile Type: Woven versus Non-woven

Performance characteristic: Tensile strength of 17 kN/m

Functional unit: 1m² Cradle-to-Grave

Geotextile Type	CO ₂ emissions
Woven (92 g/m²):	0,48 kg CO ₂ /m ²
Non-woven (190 g/m²)	$0,99 \text{ kg CO}_2/\text{m}^2$

Conclusion: This choice brings 81.600 kg CO₂ savings.

Woven Geotextiles IOnly benefits with woven geotextiles

Reduced Carbon

Woven geotextiles versus gravel	PP versus PET raw material	Woven versus Nonwoven geotextile
 ✓ Significantly less CO₂ emissions ✓ Minimized transport ✓ Reduced use of materials ✓ Possibility to reuse soil of the excavation (even if the soil has a poor quality) 	 ✓ Best-in-class polymer in CO₂ emission ✓ Low environmental impact ✓ Durable long life span ✓ Non-toxic, no harmful substances ✓ Highly resistant to microbiological and chemical degradation 	 ✓ > 50% less virgin material ✓ Less weight ✓ Less volume, less transport ✓ Reduced CO₂ emissions
Case Ostend-Bruges: 252.800 kg CO ₂ savings	Case Ostend-Bruges: 17.9200 kg CO ₂ savings	Case Ostend-Bruges: 81.600 kg CO ₂ savings

